首页> 外文OA文献 >A self-adaptive migration model genetic algorithms for data mining applications
【2h】

A self-adaptive migration model genetic algorithms for data mining applications

机译:一种用于数据挖掘应用的自适应迁移模型遗传算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data mining involves the process of extracting nontrivial knowledge or hidden patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously per-forming a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabtese database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others. Copyright © IICAI 2005.
机译:数据挖掘涉及从大型数据库中提取非平凡知识或隐藏模式的过程。遗传算法是用于数据挖掘的高效,鲁棒的搜索和优化方法。在本文中,我们提出了一种自适应迁移模型GA(SAMGA),其中种群大小,交叉点数和每个种群的突变率的参数是自适应固定的。此外,个体在人口之间的迁移是动态决定的。本文对该方法进行了数学模式分析,结果表明该算法利用先前发现的知识对启发式高产区域进行更集中和集中的搜索,同时在搜索空间的其他区域上进行高度探索性的搜索。然后使用标准测试平台功能和一组实际的分类问题显示算法的有效性能。使用密歇根样式的分类器构建分类器,并使用Pima Indian Diabtese数据库,威斯康星州乳腺癌数据库等机器学习数据库对系统进行了测试。我们算法的性能优于其他算法。版权所有©IICAI 2005。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号